
 Computers that Roar

 Computers, like other media, are metaphor machines: they both depend on and per-
petuate metaphors. More remarkably, though, they — through their status as “ universal
machines ” — have become metaphors for metaphor itself.

 From fi les to desktops, windows to spreadsheets, metaphors dominate user inter-
faces. In the 1990s (and even today), textbooks of human – computer interface (HCI)
design described metaphors as central to “ user-friendly ” interfaces. Metaphors make
abstract computer tasks familiar, concrete, and easy to grasp, since through them we
allegedly port already existing knowledge to new tasks (for instance, experience with
documents to electronic word processing). Metaphors proliferate not only in inter-
faces, but also in computer architecture: from memory to buses, from gates to the
concept of architecture itself. Metaphors similarly structure software: viruses, UNIX
daemons, monitors, back orifi ce attacks (in which a remote computer controls the
actions of one ’ s computer), and so on. At the contested “ origin ” of modern computing
lies an analogy turned metaphor: John von Neumann deliberately called the major
components of modern (inhuman) computers “ organs, ” after cybernetic understand-
ings of the human nervous system. Drawing from the work of Alan Turing and Charles
Babbage, Jon Agar has argued that the computer, understood as consisting of software
and hardware, is a “ government machine. ” Like the British Civil Service, it is a
 “ general-purpose ‘ machine ’ governed by a code. ” 1

 The role of metaphor, however, is not simply one way. Like metaphor itself, it
moves back and forth. Computers have become metaphors for the mind, for culture,
for society, for the body, affecting the ways in which we experience and conceive of
 “ real ” space: from the programmed mind running on the hard-wired brain to repro-
grammable culture versus hard-wired nature, from neuronal networks to genetic pro-
grams. Paul Edwards has shown how computers as metaphors and machines were
crucial to the Cold War and to the rise of cognitive psychology, an insight developed
further by David Golumbia in his analysis of computationalism. As cited earlier, Joseph
Weizenbaum has argued that computers have become metaphors for all “ effective
procedures, ” that is, for anything that can be solved in a prescribed number of steps,

56 Computers that Roar

such as gene expression and clerical work. 2 Weizenbaum also notes that the power of
computer as metaphor is itself based on “ only the vaguest understanding of a diffi cult
and complex scientifi c concept. . . . The public vaguely understands — but is nonethe-
less fi rmly convinced — that any effective procedure can, in principle, be carried out
by a computer . . . it follows that a computer can at least imitate man, nature, and
society in all their procedural aspects. ” 3 Crucially, this means that, at least in popular
opinion, the computer is a machine that can imitate, and thus substitute for, all others
based on its programming. This vaguest understanding — software as thing — is neither
accidental to nor a contradiction of the computer as metaphor, but rather grounds
its appeal.

 Because computers are viewed as universal machines, they have become meta-
phors for metaphor itself: they embody a logic of substitution, a barely visible con-
ceptual system that orders and disorders. Metaphor is drawn from the Greek terms
 meta (change) and phor (carrying): it is a transfer that transforms. Aristotle defi nes
metaphor as consisting “ in giving the thing a name that belongs to something else;
the transference being either from genus to species, or from species to genus, or
from species to species, or on grounds of analogy. ” 4 George Lakoff and Mark Johnson
argue, “ The essence of metaphor is understanding and experiencing one kind of thing in
terms of another . ” 5 Metaphor is necessary “ because so many of the concepts that are
important to us are either abstract or not clearly delineated in our experience (the
emotions, ideas, time, etc.), we need to get a grasp on them by means of other
concepts that we understand in clearer terms (spatial orientations, objects, etc.). ” 6
Lakoff and Johnson argue that we live by metaphors (such as “ argument is war, ”
 “ events are objects, ” and “ happy is up ”), that they serve as the basis for our thoughts
and our actions. 7 Metaphors govern our actions because they are also “ grounded in
our constant interaction with our physical and cultural environments. ” 8 That is, the
similarities that determine a metaphor are based on our interactions with various
objects — it is therefore no accident that metaphors are thus prominent in “ interac-
tive ” design. Crucially, metaphors do not simply conceptualize a preexisting reality;
they also create reality. 9 Thus, they are not something we can “ see beyond, ” but
rather things necessary to seeing. Even to see beyond certain metaphors, they argue,
we need others. 10 Metaphor is an “ imaginative rationality ” : “ Metaphor . . . unites
reason and imagination. Reason, at the very least, involves categorization, entail-
ment, and inference. Imagination, in one of its many aspects, involves seeing one
kind of thing in terms of another kind of thing — what we have called metaphorical
thought. ” 11 This imaginative seeing one kind of thing in terms of another thing also
involves hiding: a metaphor, Thomas Keenan argues, means that “ something . . .
shows itself by hiding itself, by announcing itself as something else or in another
form. ” 12

Computers that Roar 57

 Paul Ricoeur, focusing more on metaphor as a linguistic entity, similarly stresses
the centrality and creative power of metaphor. To Ricoeur, metaphor grounds the pos-
sibility of logical thought. Ricoeur, drawing from Aristotle ’ s defi nition, argues that
change, movement, and transposition (and thus deviation, borrowing, and substitu-
tion) characterize metaphor. 13 By transposing an “ alien ” name, metaphor is a “ cate-
gorical transgression . . . a kind of deviance that threatens classifi cation itself. ” 14 Since
metaphor, however, also “ ‘ conveys learning and knowledge through the medium of
the genus, ’ ” Ricoeur contends, “ metaphor destroys an order only to invent a new one;
and that the category-mistake is nothing but the complement of a logic of discovery. ” 15
It is a form of making, of poesis, that grounds all forms of classifi cation. 16 This disor-
dering that is also an ordering, a dismantling that is also a redescription, is also
instructive and pleasurable — it offers us “ the pleasure of understanding that follows
surprise. ” 17 This movement from surprise to understanding is mirrored in metaphor
itself, which is a mode of animation, of change — it makes things visible, alive, and
actual by representing things in a state of activity. 18

 Computers, understood as universal machines, stand in for substitution itself.
Allegedly making possible the transformation of anything into anything else via
the medium of information, they are transference machines. They do not simply
change X into Y, they also animate both terms. They create a new dynamic reality:
the fi les they offer us are more alive; the text that appears on their screens invites
manipulation, addition, animation. Rather than stable text on paper, computers
offer information that is fl exible, programmable, transmissible, and ever-changing.
Even an image that appears stably on our screen is constantly refreshed and regen-
erated. Less obviously, computers — software in particular — also concretize Lakoff
and Johnson ’ s notion of metaphors as concepts that govern, that form consistent
conceptual systems: software is an invisible program that governs, that makes pos-
sible certain actions. But if computers are metaphors for metaphors, they also
(pleasurably) disorder, they animate the categorical archival system that grounds
knowledge.

 If theories of metaphor regularly assume that the vehicle (the image expressly
used) makes the abstract tenor (the idea represented) concrete — that one makes
something unfamiliar familiar through a known concrete vehicle — software as meta-
phor combines what we only vaguely understand with something equally vague.
It is not simply, then, that one part of the metaphor is “ hidden, ” but rather that
both parts — tenor and vehicle — are invisibly visible. This does not mean, however,
that software as metaphor fails. It is used regularly all the time because it succeeds
as a way to describe an ambiguous relation between what is visible and invisible,
for invisible laws as driving visible manifestations. Key to understanding the power
of software — software as power — is its very ambiguous thingliness, for it grounds

58 Computers that Roar

software ’ s attractiveness as a way to map — to understand and conceptualize — how
power operates in a world marked by complexity and ambiguity, in a world fi lled
with things we cannot fully understand, even though these things are marked by,
and driven by, rules that should be understandable, that are based on understand-
ability. Software is not only necessary for representation; it is also endemic of
transformations in modes of “ governing ” that make governing both more personal
and impersonal, that enable both empowerment and surveillance, and indeed make
it diffi cult to distinguish between the two.

	I Invisibly Visible, Visibly Invisible
	Computers that Roar

